

Tetrahedron Letters 41 (2000) 9455-9458

A new preparation of cis-N-sulfonylaziridines from N-sulfonylaldimines using trimethylsilyldiazomethane[†]

Rina Hori, Toyohiko Aoyama* and Takayuki Shioiri*

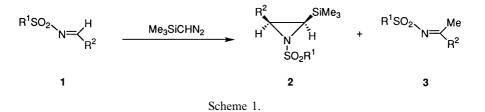
Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan

Received 26 July 2000; revised 13 September 2000; accepted 14 September 2000

Abstract

Trimethylsilyldiazomethane smoothly reacts with N-sulfonylaldimines to give 2-substituted N-sulfonyl-3-trimethylsilylaziridines in good yields with high *cis* selectivity. \bigcirc 2000 Elsevier Science Ltd. All rights reserved.

Keywords: trimethylsilyldiazomethane; N-sulfonylaldimine; N-sulfonylaziridine.


Aziridines are useful building blocks in organic synthesis, and a variety of methods for the preparation of aziridines have been reported.¹ However, the most attractive approach is either 1,2-addition of carbon to a carbon–nitrogen double bond² and 1,2-addition of nitrogen to a carbon–carbon double bond.³

We have already demonstrated that trimethylsilyldiazomethane (TMSCHN₂) is very useful as a reagent for the introduction of a C-1 unit.⁴ For instance, TMSCHN₂ smoothly reacts with electron-deficient olefins such as tetracyanoethylene and benzylidenecyanoacetate to give silylcy-clopropanes.⁵ Our continued interest in the use of TMSCHN₂ as a C-1 unit introducer has led us to investigate the aziridination of *N*-sulfonylaldimines, electron-deficient imines, with TMSCHN₂. During the course of our work, two examples of the Lewis acid-catalyzed aziridination of α -imino esters using TMSCHN₂ were reported.⁶

We have found that TMSCHN_2 smoothly reacts with *N*-sulfonylaldimines (1) in refluxing toluene to give 2-substituted *N*-sulfonyl-3-trimethylsilylaziridines (2) in good yields with high *cis* selectivity.⁷ In many cases, small amounts of *C*-methylated *N*-sulfonylimines (3) were formed as byproducts (Scheme 1).

^{*} Corresponding authors. Fax: +81-52-834-4172; e-mail: shioiri@phar.nagoya-cu.ac.jp

[†] Dedicated to Professor Harry Wasserman on the occasion of his 80th birthday.

A typical experimental procedure is as follows (entry 4 in Table 1): A mixture of $1d^8$ (144 mg, 0.5 mmol) and TMSCHN₂ (1.67 M in hexane, 0.45 ml, 0.75 mmol) in dry toluene (5 ml) was stirred at reflux for 7 h. After removal of the solvent in vacuo, the residue was purified by column chromatography on silica gel (EtOAc:hexane=1:6) to give 2d (159 mg, 85%) and 3d (15 mg, 10%).

The results are summarized in Table 1. The sulfonyl moiety of the imines 1 affected both the yield and the stereoselectivity (entries 1-5). Among those examined, the mesitylenesulfonyl group as a substituent gave the best result (entry 4). Various mesitylenesulfonylaldimines (1f-n)

Entry	Compound no.	R ¹ time (h)	R ²	Reaction	Yield (%) ^b	
					2	3
1	a	<i>p</i> -MeC ₆ H ₄	Ph ^c	3	75 (cis only)	10
2	b	$p-NO_2C_6H_4$	Ph ^c	1	45 $(cis/trans = 91/6)^{d}$	18
3	c	p-MeOC ₆ H ₄	Ph ^c	4.5	$80 \ (cis/trans = 94/6)^{d}$	10
4	d	$2,4,6-Me_{3}C_{6}H_{2}$	Ph ^e	7	85 (<i>cis</i> only)	10
5	e	Benzyl	Ph ^c	1	$65 \ (cis/trans = 87/13)^{d}$	—
6	f	$2,4,6-Me_{3}C_{6}H_{2}$	p-ClC ₆ H ₄ ^e	5	81 (<i>cis</i> only)	(9) ^d
7	g	$2,4,6-Me_3C_6H_2$	$p-NO_2C_6H_4^{e}$	5	78 (<i>cis</i> only)	12
8	h	$2,4,6-Me_{3}C_{6}H_{2}$	p-MeOC ₆ H ₄ ^e	24	76 (<i>cis</i> only)	(10) ^d
9	i	$2,4,6-Me_{3}C_{6}H_{2}$	2-Naphthyl ^e	9	76 (<i>cis</i> only)	(10) ^d
10	j	$2,4,6-Me_{3}C_{6}H_{2}$	2-Furyl ^e	2	$82^{\rm f}$ (<i>cis</i> only)	_
11	k	$2,4,6-Me_{3}C_{6}H_{2}$	3-Pyridyl ^e	2	59 (<i>cis</i> only)	-
12	1	$2,4,6-Me_{3}C_{6}H_{2}$	Styryl ^e	2	12 (cis only)	-
13	m	$2,4,6-Me_{3}C_{6}H_{2}$	Phenethyle	1	60 (<i>cis</i> only)	30
14	n	$2,4,6-Me_{3}C_{6}H_{2}$	<i>n</i> -Pentyl ^e	1	65 (cis only)	20
15	0	(1 <i>R</i>)-10-Camphor	Ph ^c	4	88 (<i>cis</i> only) (de=0%)	_

		Table 1	
Preparation	of	cis-N-sulfony laziridines	2 ^a

^a All new compounds gave satisfactory spectral data and elemental analysis (or HRMS data).

^b Isolated yield.

^c TMSCHN₂ (1.2 equiv.) was used.

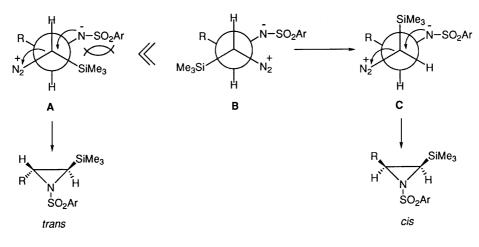
^d Determined by ¹H NMR.


^e TMSCHN₂ (1.5 equiv.) was used.

^f The compound **2j** was very unstable under column chromatography conditions, so it was isolated by recrystallization (hexane).

derived from aromatic, heteroaromatic, and aliphatic aldehydes smoothly underwent the reaction with TMSCHN₂ to give the *cis*-aziridines (**2f**–**n**) in high to moderate yields (entries 4, 6–14). Although (1*R*)-10-camphorsulfonylaldimine (**1o**) also gave the *cis*-aziridine (**2o**) in high yield, no diastereoselectivity was observed.

The trimethylsilyl group of 2 can be easily removed with tetrabutylammonium fluoride (TBAF) to give the 2-substituted *N*-sulfonylaziridines.⁹


Furthermore, the reaction of the *N*-sulfonylketimine (**3a**) with TMSCHN_2 also proceeded to give the aziridine **4**, but a very long reaction time (30 h) was required and yet the yield was low¹⁰ (Scheme 2).

Scheme 2.

In contrast to the Jørgensen's aziridination⁶ in which significant quantities of the *trans* isomers were produced by the Lewis acid catalyzed reaction, the exclusive formation of the *cis* isomers was observed without use of Lewis acids in our case.

The high *cis*-selectivity of the reaction could be explained by steric hindrance between the trimethylsilyl and the bulkier arylsulfonyl groups in the first formed betain intermediates **A** and **B**, in which the latter would lead to a minimum steric hindrance and afford the *cis*-aziridine with expulsion of nitrogen after rotation to the intermediate **C** (Scheme 3).

Scheme 3.

In conclusion, compared to the Lewis acid-catalyzed aziridination of α -imino esters using TMSCHN₂,⁶ the present method makes possible the simple, high-yield, and high stereoselective conversion of *N*-sulfonylaldimines to *cis-N*-sulfonylaziridines, and will provide an added flexibility in the aziridine synthesis.

This work was partially supported by Grant-in-Aid from the Ministry of Education, Science, Sports and Culture, Japan.

References

- (a) Kemp, J. E. G. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 7, p. 469. (b) Tanner D. *Angew. Chem., Int. Ed. Engl.* 1994, *33*, 599. (c) Pearson, W. H.; Lian, B. W.; Bergmeier, S. C. In *Comprehensive Heterocyclic Chemistry II*; Padwa, A., Ed.; Pergamon: Oxford, 1996; Vol. 1A, p. 1.
- (a) Xie, W.; Fang, J.; Li, J.; Wang, P. G. Tetrahedron 1999, 55, 12929. (b) Mohan, J. M.; Uphade, B. S.; Choudhary, V. R.; Ravindranathan, T.; Sudalai, A. Chem. Commun. 1997, 1429. (c) Rasmussen, K. G.; Jørgensen, K. A. J. Chem. Soc., Chem. Commun. 1995, 1401. (d) Casarrubios, L.; Pérez, J. A.; Brookhart, M.; Templeton, J. L. J. Org. Chem. 1996, 61, 8358. (e) Ha, H.-J.; Kang, K.-H.; Suh, J.-M.; Ahn, Y.-G. Tetrahedron Lett. 1996, 37, 7069. (f) Antilla, J. C.; Wulff, W. D. J. Am. Chem. Soc. 1999, 121, 5099.
- (a) Jeong, J. U.; Tao, B.; Sagasser, I.; Henniges, H.; Sharpless, K. B. J. Am. Chem. Soc. 1998, 120, 6844. (b) Ando, T.; Kano, D.; Minakata, S.; Ryu, I.; Komatsu, M. Tetrahedron 1998, 54, 13485. (c) Södergren, M. J.; Alonso, D. A.; Bedekar, A. V.; Andersson, P. G. Tetrahedron Lett. 1997, 38, 6897. (d) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am. Chem. Soc. 1994, 116, 2742. (e) Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1993, 115, 5326. (f) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Org. Chem. 1991, 56, 6744.
- For reviews, see (a) Shioiri, T.; Aoyama, T. J. Synth. Org. Chem. Jpn. 1986, 44, 149. (b) Anderson, R.; Anderson, S. B. In Advances in Silicon Chemistry; Larson, G. L., Ed.; JAI Press: Greenwich, CT, 1991; Vol. 1, p. 303. (c) Shioiri, T.; Aoyama, T. In Advances in the Use of Synthesis in Organic Chemistry; Dondoni, A., Ed.; JAI Press: London, 1993; Vol. 1, p. 51. (d) Shioiri, T.; Aoyama, T. In Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Ed.; John Wiley: Chichester, 1995; Vol. 7, p. 5248.
- 5. Aoyama, T.; Iwamoto, Y.; Nishigaki, S.; Shioiri, T. Chem. Pharm. Bull. 1989, 37, 253.
- 6. Juhl, K.; Hazell, R. G.; Jørgensen, K. A. J. Chem. Soc., Perkin Trans. 1 1999, 2293.
- 7. The stereochemistry of **2** was determined by NOE experiments and coupling constants¹¹ between C-2 and C-3 protons.
- N-Sulfonylaldimines 1 used were prepared according to the reported methods, for compounds 1a-e see, Davis, F. A.; Lamendola Jr., J.; Nadir, U.; Kluger, E. W.; Sedergran, T. C.; Panunto, T. W.; Billmers, R.; Jenkins Jr., R.; Turchi, I. J.; Watson, W. H.; Chen, J. S.; Kimura, M. J. Am. Chem. Soc. 1980, 102, 2000; for compounds 1f-1 and 1o; Love, B. E.; Raje, P. S.; Williams II, T. C. Synlett 1994, 493; for compounds 1m, n; Chemla, F.; Hebbe, V.; Normant, J.-F. Synthesis 2000, 75.
- For example, the aziridine 2d (112 mg, 0.3 mmol) was treated with TBAF·3H₂O (114 mg, 0.36 mmol) in THF (5 ml) at 0°C for 3 h to give N-mesitylenesulfonyl-2-phenylaziridine (75 mg, 83%).
- 10. The starting ketimine 3a was recovered in 48% yield.
- 11. Tanner, D.; He, H. M.; Somfai, P. Tetrahedron 1992, 48, 6069.